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Abstract

An elastic beam of variable thickness subject to a vertical load is considered in this
work. Finding the thickness distribution minimizing the compliance of the beam is the
structural optimization problem to be solved. Different types of support conditions for
the beam are also included in the analysis. The approach is based on the Haslinger
and Mäkinen formulation, although the resulting optimization problem is solved in a
different way. Finite elements method is used to obtain a suitable discretized problem.
The optimization problem is solved by using interior point methods and trust-region
strategies. Numerical results are reported.

Resumen

En este trabajo es considerada una viga de espesor variable sujeta a una carga ver-
tical. El problema de optimización estructural a resolver consiste en hallar el espesor
que minimiza la deformación de la viga. Se analiza el problema con diferentes tipos de
condiciones de soporte en la viga. El trabajo está basado en la formulación propuesta
por Haslinger y Mäkinen aunque el problema de optimización obtenido es resuelto con un
método diferente. El método de elementos finitos es utilizado para formular el problema
discreto. El problema de optimización es resuelto usando el método de puntos interiores
y estrategias de región de confianza. Se muestran resultados numéricos.
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1 Introduction

Our main objective in this work is to present an optimization model for solving a structural
design problem. Particularly, we are interested in sizing optimization problems, where a typical
size of a structure has to be optimized.

The model problem that we considered is well known in the structural optimization liter-
ature, however, the modelization technique presented here is simple because it avoids using
complex tools and aspects from the sensitivity analysis. The sensitivity analysis is the usual
theory for dealing this kind of problem (see [7, 12]). However, the computational aspects and
numerical implementation based on it use to be sophisticated (see [1, 5, 8]).

We consider an elastic beam, of length l, subject to a vertical load f responding to the
Euler-Bernoulli theory. This theory assumes that cross-sections perpendicular to the axis of the
beam remain plane and perpendicular to the axis after deformation. Moreover, the transverse
deflection w is given by the following fourth order differential equation

d2

dx2

(

b
d2w

dx2

)

= q for 0 < x < l,

where b = b(x) and q = q(x) are given functions of variable x and w is the dependent variable.
Here, b is a function depending on material properties and on the shape of the cross-section

area of the beam, q is the distributed load and w represents the transverse deflection. In addition
to the differential equation, the deflection w has to satisfy suitable boundary conditions, given
by the supporting conditions.

In our optimal design problem the variable e is the thickness of the beam (height of cross-
section) and our goal is to find the thickness distribution that minimize the compliance of
the beam or, equivalently, that maximize the stiffness of the beam. Under this condition, the
cross-section is a function of the thickness, that is, w = w(e).

For numerical experiments we consider a beam with variable thickness, represented by the
interval Ω = [0, 1], and subject to different support conditions.

Though our approach of this problem, and part of its analysis, is based on the formulation
of [6], the resulting optimization problem is solved in a different way.

Basically, our idea is to use the finite element method to obtain a suitable discretization
of the continuous boundary value problem in order to formulate an optimization nonlinear
problem subject to equality, inequality constraints and bounds on the variables. For numerical
results we have used the code KNITRO ([15]), which is an implementation of interior point
method in combination with trust-region strategies ([14]).

This work is organized as follows. In section 2 we present the thickness beam problem
and give a first optimization formulation, in section 3 we develop the discretization of the
continuous problem using the finite element method. In section 4 we describe the reformulated
optimization problem derived from the discretization and in section 5 we give some numerical
results. Finally, in section 6, we state some conclusions.

2 The problem

Let us consider an elastic beam fixed at both of its endpoints subject to a uniformly distributed
vertical load q(x) and variable thickness e. Under these assumptions, the deflection w is the
solution of the following boundary value problem:
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d2

dx2

(

βe(x)3 d2w

dx2

)

= q(x), 0 < x < l, (2.1)

w(0) = w(l) =
dw

dx
(0) =

dw

dx
(l) = 0,

where β ∈ L∞([0, l]) is a positive function depending on material properties and on the shape
of the cross-section area of the beam.

The stiffness of the beam is characterized by the functional J : H2
0 (Ω) →

�
defined as

J(w(e)) =
∫ l

0
q(x)w(e)dx,

where H2
0 (Ω) represent the Sobolev space of functions whose second derivatives are square-

integrable and satisfy the boundary conditions and w(e) is the solution of the boundary value
problem (2.1).

This functional, which represents the external energy of deformation, can be considered as
a measure of flexibility of the beam. On the other hand, the decrease of this functional implies
increasing of the stiffness, so the problem of maximizing the stiffness is equivalent to minimize
the functional J . This functional frequently appears in structural optimization either in the
objective function or in the constraint set of the problem ([2, 13]).

To formulate the mathematical problem, we add some conditions, besides (2.1), that the
thickness e has to satisfy. This conditions define a set of admissible thicknesses C given by:

C =



















e ∈ C0,1(Ω) | 0 < emin ≤ e ≤ emax in Ω,
|e(x1) − e(x2)| ≤ γ|x1 − x2| for all x1, x2 ∈ Ω,
∫ l
0 e(x)dx = α, for some α > 0,

e is symmetrical in Ω



















,

i.e., C consists of functions that are uniformly bounded, uniformly Lipschitz continuous in [0, l]
and preserve the beam volume and due to the boundary conditions a symmetric property is
required. All of such conditions make sense from the practical and physical point of view.

From numerical and implementation aspects we consider the set C̃ characterized by contin-
uous and piecewise constant thickness functions. This last requirement implies to construct a
stepped beam. Consequently, the optimization problem is given by

Find e? ∈ C̃ such that

w(e?) = argmin J(w(e)) = argmin
∫ l

0
q(x)w(e(x))dx

where w(e) satisfy the problem (2.1).

To solve numerically this problem, we make a complete discretization of it, and we obtain
a new problem defined by a finite number of design parameters.

3 Discretization of the State Problem

For a discretization of the continuous problem we use a finite element approach, that is, we
discretize the domain Ω and write the weak formulation of the differential equation. See [11, 10].



Maciel-Pilotta-Sottosanto, Thickness optimization of an elastic beam 16

Let d ∈ � be given and ∆h : 0 = a0 < a1 < . . . < ad = l be an equidistant partition of Ω
with the step h = l/d, ai = ih, i = 0, . . . , d. Thus, we divide the interval Ω in d subintervals
called elements. The ai, i = 0 . . . , d are called nodes.

In order to obtain the weak formulation we consider an arbitrary element Ωk = [ak, ak+1].
Let Vh be a finite dimensional subspace of H2

0 (Ω), whose functions are continuous piecewise
polynomials. Let v ∈ Vh be an arbitrary test function.

Now, by using the standard integration-by-parts formula twice in Ωk, we have

∫ ak+1

ak

(

βe3 d2v

dx2

d2w

dx2
− vq

)

dx +

[

v
d

dx

(

βe3d2w

dx2

)

−
dv

dx
βe3 dw

dx2

]ak+1

ak

= 0.

The variables at each node involve the deflection w and its derivative dw
dx

.
In the case of a beam supporting a flexion, the terms which have to be evaluated at the

endpoints, have structural interpretations ([10]). Thus, the natural boundary conditions in-

volve specifications about the bending moment βe3 d2w
dx2 and the shear force d

dx

(

βe3 d2w
dx2

)

at the
endpoints.

For simplicity, we introduce the following notation

Qk
1 =

[

d
dx

(

βe3 d2w
dx2

)]

ak

, Qk
2 =

[

βe3 d2w
dx2

]

ak

,

Qk
3 = −

[

d
dx

(

βe3 d2w
dx2

)]

ak+1

, Qk
4 = −

[

βe3 d2w
dx2

]

ak+1

.

Thus, the weak formulation is given by

0 =
∫ ak+1

ak

(

βe3 d2v

dx2

d2w

dx2
− vq

)

dx − v(ak)Q
k
1 (3.1)

−

(

−
dv

dx

)

Qk
2 − v(ak+1)Q

k
3 −

(

−
dv

dx

)

Qk
4.

See Fig. 1.
The variational formulation (3.1) requires that the interpolation functions to be twice contin-

uously differentiable and has to satisfy interpolation conditions at the endpoints: w(ak), w(ak+1), w′(ak), w′(ak+1).
These four conditions imply that we need a cubic polynomial to interpolate w(x) and we assign
the nodal variables for the element Ωk

u1 = w(ak), u2 = −w′(ak)
u3 = w(ak+1), u4 = −w′(ak+1).

By using these nodal variables we have the following expression for w in Ωk

w(x) = u1φ1(x) + u2φ2(x) + u3φ3(x) + u4φ4(x) (3.2)

=
4
∑

j=1

ujφj(x),

where the functions φj are the cubic Hermitte polynomials.
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Figure 1: Generalized forces at one element of the beam.

3.1 The Finite Element Model

According to (3.2) and the interpolation functions φj in the weak formulation (3.1) we obtain
the finite element model for the Euler-Bernoulli beam. Since there are four nodal variables at
each element, then four possible choices could be used for v: v = φi, i = 1, . . . , 4.

For simplicity we consider the function β with constant value at the whole beam. Therefore,
for the i-th algebraic equation (for v = φi) we have that

0 = βe3
k

4
∑

j=1

(

∫ ak+1

ak

d2φk
j

dx2

d2φk
i

dx2
dx

)

uj

−
∫ ak+1

ak

φk
i q(x)dx − Qk

i ,

or equivalently,
4
∑

j=1

Kk
iju

k
j − F k

i = 0,

where

Kk
ij = βe3

k

∫ ak+1

ak

d2φk
j

dx2

d2φk
i

dx2
dx,

F k
i =

∫ ak+1

ak

φk
i q(x)dx + Qk

i .

Now, if we write these coefficients in matrix notation we have











Kk
11 Kk

12 Kk
13 Kk

14

Kk
21 Kk

22 Kk
23 Kk

24

Kk
31 Kk

32 Kk
33 Kk

34

Kk
41 Kk

42 Kk
43 Kk

44





















uk
1

uk
2

uk
3

uk
4











=











qk
1

qk
2

qk
3

qk
4











+











Qk
1

Qk
2

Qk
3

Qk
4











,

where the matrix of the system, which is symmetric, is the stiffness matrix for the k-th element
of the beam and the right hand side term is the vector of generalized forces, including the
applied external forces and the shear force and flexion at the endpoints of the element.
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If h is the length of the element and e is the thickness, the above equation is given by

Kk =
2βe3

k

h3











6 −3h −6 −3h
−3h 2h2 3h h2

−6 3h 6 3h
−3h h2 3h 2h2











,

F k =
qh

12





























6
−h

6
h











+











Q1

Q2

Q3

Q4





























.

See [11].

3.2 Element Assembly

Having calculated the matrices and equations describing our approximations over each finite
element, the next step is to assemble these equations on the entire mesh adding up the contri-
butions furnished by each element. To do this, we take into account the two degrees of freedom
at each node. That is, we consider the relationship between the variables associated to the right
node at one particular element and the left node to the next element. In particular we con-
sider the equilibrium relationships between the bending moment and the shear force between
elements.

When the beam is partioned in d elements we obtain a 2(d+1)× 2(d+1) assembly matrix.
However, the algebraic system has 4(d + 1) unknown variables, 2(d + 1) correspond to the
generalized forces vector and the other 2(d+1) to the deformations and its derivatives. Imposing
the boundary conditions and the applied loads will allow us to reduce the unknown variables.

The boundary conditions for the beam problem depend on the geometric nature of the
support conditions.

In the particular case of a beam fixed at both endpoints the deflection w and its derivative
dw
dx

are zero at the endpoints. The equilibrium conditions, at the intermediate nodes, yield the
equations

Qk
3 + Qk+1

1 = 0, Qk
4 + Qk+1

2 = 0,

because there are no forces applied there, whereas the shear force and the bending moment are
unknown at the endpoints of the beam.

Now, by using the equilibrium conditions at the intermediate nodes we have the nonlinear
system

K(e)U(e) = F (e),

where K(e) is the stiffness matrix




































6e3
1 −3he3

1 . . . 0 0 0
−3he3

1 2h2e3
1 . . . 0 0 0

−6e3
1 3he3

1 6(e3
1 + e3

2) . . . 0 0
−3he3

1 h2e3
1 3h(e3

1 − e3
2) . . . 0 0

...
...

...
...

...
...

0 . . . . . . 3h(e3
d−1 − e3

d) −6e3
d −3he3

d

0 . . . . . . 2h2(e3
d + e3

d−1) 3he3
d h2e3

d

0 . . . . . . 3he3
d 6e3

d 3he3
d

0 . . . . . . h2e3
d 3he3

d 2h2e3
d




































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and

U(e) =



































0
0
u3
...
...

u2d

0
0



































, F (e) =
qh4

24β

























































































6
−h

12
...
...
6
h































+































Q1
1

Q1
2

0
...
0

Qd
3

Qd
4

























































































.

Since the equations that contain deflections and its slopes do not contain the unknown
coefficients associated to the generalized forces, the corresponding equations can be solved
independently. Thus, the matrix equation can be partitioned







K11 K12 K13

K21 K22 K23

K31 K32 K33













U1

U2

U3






=







F 1

F 2

F 3






,

where U1 and U3 contain the known deflection and derivatives (in this case are zero due the
support conditions) and U 2 are the unknown. At the right hand side, in F 1 and F 3 there are
unknown coefficients. Under this conditions the matrix equation that we are interested in, can
be expressed as

K22U2 = F 2. (3.3)

This is a 2(d−1)×2(d−1) system, whose unknown variables are the deflection and derivatives
at the intermediate nodes of the discretization. The coefficients of the submatrix K22 depend
on the thickness of each element of the beam.

4 Reformulation of the Optimization Problem

The discretization of the state problem yields a system of nonlinear algebraic equations (3.3).
For the sake of simplicity of notation we rewrite the system (3.3) as

K(e)U(e) = F, (4.1)

where U(e) contains the deflection and its derivatives at the intermediate nodes. For the
numerical solution of the problem we have to consider the conditions for the admissible thickness
and discretization of the objective function.

The discretization of the state problem concern to the functional J , however, the restriction
of J to the subspace Vh is identified with another functional defined in the euclidean space� 2(d−1) as in [6].

To do this, we discretize the integral by using the same numerical formula that we have used
for the volume of the beam. Since we consider uniformly distributed load, that is q(x) = q,
constant at the whole beam, and we also assume that the thickness is constant at each element
it is enough to use the rectangle rule. Clearly, if the load were not uniformly distributed it would
be better to use a higher order quadrature rule. Then, the objective function is approximated
by

J(u(e)) =
∫ l

0
q(x)u(e(x))dx ' qT Ū ,
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where Ū contains only the d−1 components of U(e) associated to deflections at the intermediate
nodes and q is a constant vector, which has the same size.

Since the discretized beam is stepped constant, the admissible thickness is defined by a
piecewise constant function that satisfies the following conditions

emin ≤ ei ≤ emax, i = 1, . . . , d,

| ei+1 − ei |≤ γh, i = 1, . . . , d − 1,

for some constant γ. Moreover, the preserving volume condition is given by

h
i=d
∑

i=1

ei = α.

Finally, the optimization problem is given by

min
e,U

qT Ū

s.t. K(e)U(e) = F

h
i=d
∑

i=1

ei = α,

emin ≤ ei ≤ emax, i = 1, . . . , d,

| ei+1 − ei |≤ γh, i = 1, . . . , d − 1.

Thus, the above problem is the classical formulation of a nonlinear programming problem with
bounds at the variables and equality and linear inequality constraints. It is worth noting that
system of algebraic equations (4.1) is nonlinear strongly on the design variables ei. Through
the derivation of the model is similar to the presentation in [6], the formulation is conceptually
different. In our approach the variables corresponding to thickness and deflection are related
through the constraint equation KU = F , although initially they are independent. Moreover,
in that presentation the optimization problem take into account the thicknesses and their rela-
tionship with the deflections trough a sensitivity analysis. While sensitivity analysis provides an
elegant and mathematically rigorous method to formulate the problem, it has one very serious
drawback: the numerical solution is very difficult to be computed.

5 Numerical Experiments

For numerical experiments we consider a beam with two different support conditions. First,
we analyze a beam with both endpoints fixed, whose discretized model has been described in
previous sections. Then, we consider a beam with one endpoint fixed and the other one simply
supported. For this case, we note that the boundary conditions are different. At the simply
supported endpoint the deflection is zero whereas its derivative is not: this support condition
does not allow to assimilate bending moment at this endpoint. By using the notation of section
3, we have

w(0) = u1
1 = 0;

dw

dx









x=0
= u1

2 = 0;
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w(l) = ud
3 = 0; Qd

4 = −

[

βe3
d

d2w

dx2

]

l

= 0.

According to these boundary conditions the nonlinear system of algebraic equations from the
finite element method is modified.

For solving the optimization problem, we have used the solver KNITRO 3.1 ([14, 15]), by
means of a Visual Fortran interface. The user has to provide three subroutines including the
data of the problem, the objective function and the constraints, and finally, the gradient of the
objective function and the Jacobian matrix of the constraints. This code is an implementation
of the interior point method, where the nonlinear programming problem is solved by means of
the solution of a sequence of barrier subproblems, depending on a parameter µ. On the other
hand, the algorithm uses a trust-region method as a globalization strategy and a merit function
to obtain global convergence results.

Each iteration of the subalgorithm generates steps whose normal and tangential components
satisfy mild conditions on adequate models. The normal component improves the feasibility
and the tangential component, which is computed using the projected conjugated gradient
method, improves the optimality. The whole code KNITRO 3.1 computes some iterations for
each subproblem before the barrier parameter is decreased and then the procedure is repeated
until suitable convergence conditions are reached. See [4, 3] for a complete description and
analysis of this method.

The number of elements used for numerical experiments in both problems was d = 8 and
d = 32. For simplicity we adopted the following default values:

- l = 1, the length of the beam.

- β = 1; q(x) = −1, the uniformly distributed load.

- emin = 0.01, emax = 0.1, bounds for the thickness.

- α = 0.05, γ = 0.5.

The initial approximation for thickness were ei = 0.05, i = 1, . . . , d. Then we solved the
linear system of algebraic equations (4.1) in order to obtain the initial values for the other
variables.

Finally, we show in Fig. (2–3), the profile of the optimal solution for the beam problem, in
both cases, and the corresponding optimal value of the objective function.

6 Conclusions

We have presented and tested an optimization formulation for the elastic beam problem, which
is subject to vertical loads, as in Euler-Bernoulli theory.

One of the main advantage of this formulation is that it is possible to use any of the many
available nonlinear programming method to solve the thickness problem. It is a very attractive
feature due to the advances in optimization algorithm during the last years. On the other
hand, researchers in engineering, applied mathematics and other sciences paid attention to the
conexion between optimization and computational mechanics in structural problems (structural
optimization), so important and interesting advances were done about this area recently.

Though we considered here a one dimensional model, the same ideas can be applied in more
complicated structural problems of dimension 2 or 3, or subject to different support and loads.
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Figure 2: Discretization of the beam with both endpoints fixed by using 8 (J=6.388) and 32
elements (J=5.659) respectively.
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Figure 3: Discretization of the beam with endpoints fixed-simply supported by using 8
(J=29.458) and 32 elements (J=15.765) respectively.

The numerical results obtained are promising and encouraging. Moreover, the particular
structure of the elastic beam problem obtained after the discretization seems to indicate that
new optimization approach as Inexact–restoration methods ([9]) could be perform efficiently,
particularly for large scale discretization.

In practice, it is usually important to optimize structures subject to different types of loads.
In addition to the compliance cost functional we could consider another two functionals in-
volving the smallest eigenvalues for two generalized problems. Eigenvalues represent natural
frequencies of free oscillations and buckling loads of the beam and depend on the thickness
distribution e. The goal could be to find a thickness minimizing the compliance of the per-
pendicularly loaded beam, maximizing the minimal natural frequency (i.e., the beam is stiffer
under slowly varying dynamic forces), and maximizing the minimal buckling load (i.e., the
beam does not loose its stability easily under the compressive load). So we would have a simple
prototype of multiobjective thickness optimization of an elastic beam. It could be solved using
nonlinear least squares if the solution of each problem is known. This will be the object of our
practical research in the near future.



Maciel-Pilotta-Sottosanto, Thickness optimization of an elastic beam 23

References

[1] ARORA J. S., Introduction to optimal design. McGraw-Hill Book Company, New York
(1989).

[2] BENDSØE M. P., Topology optimization. Theory, methods and applications, Springer
Verlag, Berlin, (2002).

[3] BYRD R. H., GILBERT C. & NOCEDAL J., A trust region method based on interior
point techniques for nonlinear programming, Mathematical Programming 89(1), (2000),
pp. 149–185.

[4] BYRD R. H., HRIBAR M.E. & NOCEDAL J., An interior point algorithm for large scale
nonlinear programming, SIAM Journal on Optimization, 9(4), (1999), pp. 877–900.
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